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Abstract. In 1964, in a seminal paper, Tuy proposed a simple algorithm for concave minimization
over a polytope. This algorithm was shown to cycle some years later. Recently however it has been
shown that despite this possibility of cycling, Tuy’s algorithm always finds the optimal solution of
the problem. We present a modification of it which simplifies the cycle detection.
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1. Introduction
The concave minimization problem
(CP) min{f(x) | x € P}

consists in finding a global minimizer* of the concave functiorf over the poly-
topeP = {x € R" : Ax < b} whereA is a matrix ofR"*" andb a vector of
R™.

The core problem for concave minimization is the problertrafiscending the
incumbeni(see Horst and Tuy [3], Tuy [11]). Given a numbherit can be defined
as follows:

core(y, P) : check whetherf (x) > y forall x € P, and if not, find a point’ € P
such thatf (x') < y.

An optimal solution for problen(C P) can be found by solving a finite number

of times the core problem as follows (see, e.g., Tuy [11]). Start with an extreme
point ¥ of P, and let f be its value. Solve problerwre(f, P). If the result is

that f(x) > f for all x € P, X is an optimal solution of problemC P). If on

the other hand, a point e P is found such thaif (x') < f, we look for a new
extreme poinf’ of P such thatf (x’) < f(x’). This can be done for example by
using the Caratheodory theorem (see [8]), or if the gradient of the function at a
point can be easily computed, by solving a linear program (see, e.g., Tuy [11, p.
135]). This procedure generates a strictly decreasing seqt{@ﬁpeeach value of

it corresponding to a different extreme point®f Since P has a finite number of
extreme points, this procedure must be finite.
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In [10], Tuy proposed several ideas and algorithms for solving this core prob-
lem, that still influence today’s methods (for surveys on algorithms for concave
minimization, see e.g., Horst and Tuy [4], Benson [2]). One of these algorithms,
which consists in covering the polytope by (possibly overlapping) cones, was shown
to cycle by Zwart [12]. To avoid cycling, a small modification [13, 1] was brought
to Tuy’s algorithm, which results in a cone patrtitioning algorithm (i.e., with no
two cones intersecting, except possibly at their boundaries). In the next 20 years,
a lot of works has been done on cone partitioning algorithms, mainly developing
special subdivision procedures to ensure convergence. Recently, Locatelli [6] and
Jaumard and Meyer [5] showed independently and by different approaches, that
these procedures are not necessary to obtain the convergence. On the other hand,
rather surprisingly, it was shown in [7] that the original algorithm of Tuy, despite it
may cycle, always finds an optimal solution of problé@v). In [8], a non-cycling
cone covering algorithm was proposed. This algorithm uses a slightly different kind
of cones, with possibly more thanextreme rays. At each iteration, upso+ 1
linear programs have to be solved.

In this paper we propose a simple cone covering algorithm that generates cones
with non-increasing value. This algorithm uses traditional cones wigxtreme
rays and requires only 2 linear programs per cone. Cycling may be possible only
between cones of same value, which facilitates its detection. The paper is organized
as follows. In Section 2, we describe the basic operations. The algorithm is given
in Section 3 and its finiteness and correctness are proved in Section 4. A short
discussion concludes the paper in Section 5.

2. Basic operations
2.1. INITIAL COVERING

Let O be an extreme point of the polytope. For simplicity, we assume @hit
non-degenerated (if no non-degenerated extreme point is available, we can start
the algorithm with an initial cone partition formed by+ 1 cones: see, e.g., [7]).

The algorithm starts with the con® of origin O and whose: extreme rays are
determined by the adjacent extreme points @. SinceO is a feasible point, we

can assume without loss of generality that< f(0). Indeed, if this is not the
case,0 solves the core problem.

2.2. ELIMINATION TEST

The elimination test is the standard one of the literature (see, e.g., Horst and Tuy
[4]). Let K = cone{O;x', ..., x"} be a cone, where/, j = 1,...,n aren
extreme points of. For eachj, we compute the so-callgg-extensiony’ = 6,x/,

which is the intersection of the halfli@x/) with the boundary of the level set

C, ={x e R": f(x) > y} (if C, is not bounded, we consider inste@d N B
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whereB is a ball of centeD containingP). Consider the following linear program:

n )\‘

LP1(K) max ZQ—J

j=1"
Z)\ijj Sb

j=

s.t. 1
A=20

and its dual:

DLP1(K) min u'b
ot M’ijke—lj, j=1...,n
n = 0.

If the optimal valuep? is less than or equal to 1, this means that the portion of the
polytopeP contained in the con& is included in the simpleX = conv{0, y*, y?,

.., y"}asit can be seen by the substitutioris= % in the constraints of P1(K).
We then have

_min_f(x) > min £ (x) = min{£(0), fOY, L fOMY =Y

which shows thatk N P cannot contain a point with value y. Therefore if
p! < 1, we eliminate the cone.

2.3. SUBDIVISION

If p1 > 1, we subdivide the con&. Let A* and 4! be respectively an optimal
solution of the primal and of the dual. It was shown (see e.g. [5]) that {x €

R* : utAx = pt} is a supporting hyperplane for the polytope, hence defines a
face F of P. Note that sincg.! > 0 andp® = u'b, a definition of F is

F:{xeR”:aix:b,-Vil,uil>O; a,-xébi\?’iluilzo}.

n

We take as subdivision point any extreme pairit= Y~ A%x/ of F such that
j=1

ZQ—J > 1. (1)
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Such a point can for example be found by solving the following linear program by
a simplex-like algorithm:

LP2(K,pY)  max =L
" 30

a;x = b;, Vil,ul.1>0
ot a;x gnbi, | Vi | ,ull =0
x =) Ajx/
j=1

(this linear program is feasible since it admits the solutior= Z’]’.Zl A}xf, A=
A1) and its optimal value is greater than 1; moreovexifi) is an extreme point
solution, thenx is an extreme point of' by definition of the constraints).

Note that the pointv? is not necessarily ik since we do not requirg? > 0,
and is an extreme point @f since it is an extreme point of one of its faces. It will
be tested for a possible solution to the core problem: indegdif) < y, the core
problem is solved with’ = w?.

The subdivision process is defined as follows. For eastich tha‘r)@ > 0, we
construct the con&/, obtained fromk by replacingx’/ by w?. It is easy to show
that the union of all these conés’ forms a cover of the con& (see, e.qg., [7,
Proposition 1]), therefore we replageby the cones/. We say that the conds’
are thesonsof coneK by the subdivision process.

The following result only uses the fact that is an extreme point of-.

PROPOSITION 1. Let K’ be a son ofK by subdivision with respect te?. If
f(w? >y andph(K) > 1, thenp(K') < p*(K).

Note that the assumptions are not restrictive sing&(if?) < y the core problem
is solved and ifp*(K) < 1 the conekX is deleted.

Proof. Since f (w?) > y, the y-extension ofw? is y/ = w? with 6 > 1. Let
K’ be a son oK it differs from K by the replacement of one of the edge j =
1,...,n by w? We claim thatu! is a feasible solution of problemL P1(K’)
with value pX(K). Indeed,u*Ax/ > % forj =1,...,nandu > 0 asulis
an optimal solution oD L P1(K). MoreoverpAw? = u'b = pY(K) > 1 > 1.
SinceDL P1(K') is a minimization problem, it follows that'(K’) < p*(K).

3. Algorithm

We now give formally the algorithm for solving the core problem. The algorithm
uses 3 setxLoveris the set of cones that have yet to be proces@auheis the set

of cones that have been processed and whose value is equal to the currept value
this set must be checked when generating a new cone in order to avoid regenerating
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an already processed cone. Finallgewis the set of new cones resulting from the
subdivision of a cone.

Step Yinitialization) : construct an initial conical cove¥ewof P as explained in
Section 2.1. Compute the value pfat the origin and at the intersection points
of the generating rays with the polytope: if one of these values is lesg/than
stop and return the corresponding point. Initializeverto @, Honeto ¥ and
p to 4-o0.

Step fathoming): for each con& in & ew, compute the/-extensions and solve
the problemD L P1(K), obtaining the optimal solutiop*(K) and valugo'(K).
Remove from# ewall conesk for which p1(K) < 1.

Step 3anti-cycling) ;N ew < New\ Done

Step 4(subdivision point computation): for each coRein N ew, choose an ex-
treme poinw?(K) of F = PN{x e R" : u*(K)Ax = p*(K)} satisfying (1).

If f(w?(K)) < y:stop and return’ = w?(K).
Let Cover < Coveru New.
Step 5cone selection): ilCover = @, stop: f(x) > y for all x € P. Otherwise

select the con& = arg_max p1(K) and remove it fromCover. If p1(K) <
ecover

P, resetDoneto ¥ andp to p*(K). Add K to Done )
Step 6(subdivision): subdivide the conk via the pointw?(K) as indicated in
Section 2.3. LetV ewbe the set of sons df. Return to Step 2.

Note that in Step 3, it is only necessary to check if a con#’efvis in Doneif its
valuep is equal to the current valye

4. Convergence proof

A straightforward adaptation of the proof used to prove the validity of Tuy’'s al-
gorithm (see [7]) shows that this modified algorithm solves the core problem.

THEOREM 1. After a finite number of iterations, the above algorithm stops at
Step 1, 4 or 5. In the first two cases, a pointe P such thatf (x") < y is found;
in the last casef(x) > y forall x € P.

Proof. Since the cones are defined by extreme point® ofvhich are in finite
number, the number of possible cones is finite. Moreover the valsssociated
to a cone depends only on that cone (note thatfixed). By Proposition 1 and the
cone selection rule in Step 5, a cone with vahlegreater than the current value
© cannot be obtained. Moreover the anti-cycling rule in Step 3 ensures that a cone
with value p* = % cannot be regenerated. Since at each iteration, a finite number
of cones is generated, it follows that the algorithm will stop after a finite number
of iterations.
If the algorithm stops at Step 1 or 4, clearly the returned poing feasible and
satisfiesf (x’) < y, so the core problem is solved. It remains to show that if there
exists a poinke’ € P such thatf (x') < y, then the algorithm stops at Step 1 or 4.
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Assume by contradiction that such a poitiexists but that the algorithm does not
stop at Steplor4. Let’ = f(x'). Sincef is concave oR”, it is also continuous
(see, e.g., Rockafellar [9]), hence by definition

Ve>0 368,>0 | xeBX.,8) = |f(x)—y|<s¢

whereB(x’, §.) denote the ball of centaer and radius,.

We fix ¢ to V‘ZV/,which implies thatf (x) < % < yforallx € B(x', §,). Toany
subsetS; of vert(P) with |S;| < n, we associate the affine subspaéespanned
by O and by the elements ¢t. Since theH; are in finite number and of dimension

< n,the setB(x', § )ﬂP\(UH) is non-empty. Let € B(x',§ )ﬁP\(UH)

then f(x) < y. We consider the sequentk?}, g = 0, 1, ... of cones containing
% such that for ally, K9*1 is a son ofK? by the subd|V|S|on process of Step 6.
Note thatp(K9) > 1 for all ¢, since otherwisef(x) > y forall x € K9 N P,
contradicting the fact that (x) < y. Hence all cones of the sequence belong to the
set of cones generated by the algorithm. Moreover since the subdivision process
is always defined, the sequence is infinite. We will now prove that all cones in
this sequence must be distinct, which is not possible since the number of possible
cones is finite: this contradiction will then imply that our assumption was false,
e., that the algorithm must stop at Step 1 or 4. To show that all cones in the
sequence are distinct, assume tRat = cone{x?!, ..., x9"} containsx, and let
y¥ =0{x¥,j=1,...,nbe they-extensions. Sinc& is nondegenerate, there
exists a uniqué? > 0 such that

F=) lx 2)
=1

(the fact that no component of the vector is null is a consequence of the assump-
n ~11 n ~11

tion ¥ ¢ UH) We claim thatZ > 1. Indeed, |fZ Yoclie st =
j=1 ] j=1 ]

conv{0, yt, ..., y9"}, which by concavity off and definition of the pointg?/, j =

1,...,n, implies f(X) > y, a contradiction. It is now not difficult to show that

the coneK‘f+l is the son ofK? obtained by replacing the point’‘s by w¢ =

w2(K9) = Z)ﬂx’” with ¢, satisfying

j=1
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We then havek9t! = cone{x9t1, ... x9T1m} with x4t/ = x4 for j =
1,...,n,j # ¢, andxi™tt = w7, and
n
~ ~q+1_g+1,j
X = Zvj X
=1
with
T,
U/ — )\‘T)\'J |f J #gq
J vy, .
eq

If f(w?) < y, the algorithm would stop at Step 4, so we ha«av?) > y for all
q. Then@}”rl =67 for j # ¢, and@,ﬁ’+l > 1, hence

~ ~ 1 ~ ~
n q+1 n le-l vfﬁ‘ n UZ VZ
E J _ J ]’)({ _ q )\’(1 + q
9q+l Z 9 0q+l Z q J A4 0q+l)\‘q
j=1Yj j=Lj#e, J j=1 J g by e
n  =~q ~4q n q
. vV .
Y Yo Ao L
- q q q q+1
j=1 91' )‘fq j=1 91 9154
n 1’3;1
< 0—6.1,
j=1"J

D‘I
the last inequality holding becauaé satisfies (1)9‘1+l > 1, andﬁ > 0 by the

choice ofx. Since the value o} "} depends only o and on the cone, this

j= leq

shows that a same cone cannot repeat contradicting the finiteness of the number of

distinct cones. Hence the algorithm must stop at Step 1 or 4.

5. Discussions

If the subdivision point is taken to be! rather thanw?, we obtain the cone
partitioning algorithm with a pure strategy @efsubdivision [1, 13, 5, 6].
If we replaceL P2(K, ut) by

LP2(K) max Z—
j=1
a;x < b;, Vi=1l...,m

S.t. X = Z ijj‘
j=1
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(i.e., if no constraint ofP is transformed to an equality), we obtain essentially
Tuy’s 1964 algorithm (actually in Tuy’s algorithm, the elimination test is based on
the optimal value of. P2 rather tharL. P11, which results in less eliminations;P 1

is not solved).

Tuy’s 1964 algorithm and the cone partitioning algorithm only need to solve
one linear problem per cone: in Tuy's algorithm it isP2" while in the cone
partitioning one it isL P1. We observe that Tuy’s algorithm is finite (or can easily
be transformed to a finite one) but that it may waste a lot of time by reexploring
large portion of the polytope (note in particular that there is no monotonicity result
comparable to Proposition 1 f@?, so a son can be worse than its father: see [7]).
On the opposite, the cone partitioning algorithm never reexplores regions of the
polytope that were already explored, but it is still not known if it is finite when an
exact optimal solution is sought.

By considering a different linear program for each operation (deletion and de-
termination of the subdivision point), we have obtained an intermediate algorithm:
its finiteness is easy to ensure since we have only to detect possible cycles between
cones of same value; and although some regions of the polytope may be reexplored,
the monotonicity ofo? limits this reexploration.

Currently, these 2 linear programs are defined using the same cone. In the future,
we could possibly obtain an even better algorithm by solviiL on a tighter cone
(not necessarily defined by extreme points), that does not include the non-necessary
parts of the polytope added by the covering.

It is not known if cycling can really occur in our algorithm. However if we
modify L P2 as indicated above (i.e., if we replat®?2 by L P2'), it is known that
cycling can occur: see [7].

Finally, observe that the algorithm does not need to sblR@ at optimality. A
basic feasible solution with value strictly greater than 1 is sufficient.
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