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Abstract. In 1964, in a seminal paper, Tuy proposed a simple algorithm for concave minimization
over a polytope. This algorithm was shown to cycle some years later. Recently however it has been
shown that despite this possibility of cycling, Tuy’s algorithm always finds the optimal solution of
the problem. We present a modification of it which simplifies the cycle detection.
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1. Introduction

The concave minimization problem

(CP ) min{f (x) | x ∈ P }
consists in finding a global minimizerx∗ of the concave functionf over the poly-
topeP = {x ∈ Rn : Ax 6 b} whereA is a matrix ofRm×n andb a vector of
Rm.

The core problem for concave minimization is the problem oftranscending the
incumbent(see Horst and Tuy [3], Tuy [11]). Given a numberγ , it can be defined
as follows:

core(γ, P ) : check whetherf (x) > γ for all x ∈ P , and if not, find a pointx′ ∈ P
such thatf (x′) < γ .

An optimal solution for problem(CP ) can be found by solving a finite number
of times the core problem as follows (see, e.g., Tuy [11]). Start with an extreme
point x of P , and letf be its value. Solve problemcore(f , P ). If the result is
that f (x) > f for all x ∈ P , x is an optimal solution of problem(CP ). If on
the other hand, a pointx′ ∈ P is found such thatf (x′) < f , we look for a new
extreme pointx ′ of P such thatf (x′) 6 f (x′). This can be done for example by
using the Caratheodory theorem (see [8]), or if the gradient of the function at a
point can be easily computed, by solving a linear program (see, e.g., Tuy [11, p.

135]). This procedure generates a strictly decreasing sequence{f k}, each value of
it corresponding to a different extreme point ofP . SinceP has a finite number of
extreme points, this procedure must be finite.
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In [10], Tuy proposed several ideas and algorithms for solving this core prob-
lem, that still influence today’s methods (for surveys on algorithms for concave
minimization, see e.g., Horst and Tuy [4], Benson [2]). One of these algorithms,
which consists in covering the polytope by (possibly overlapping) cones, was shown
to cycle by Zwart [12]. To avoid cycling, a small modification [13, 1] was brought
to Tuy’s algorithm, which results in a cone partitioning algorithm (i.e., with no
two cones intersecting, except possibly at their boundaries). In the next 20 years,
a lot of works has been done on cone partitioning algorithms, mainly developing
special subdivision procedures to ensure convergence. Recently, Locatelli [6] and
Jaumard and Meyer [5] showed independently and by different approaches, that
these procedures are not necessary to obtain the convergence. On the other hand,
rather surprisingly, it was shown in [7] that the original algorithm of Tuy, despite it
may cycle, always finds an optimal solution of problem(CP ). In [8], a non-cycling
cone covering algorithm was proposed. This algorithm uses a slightly different kind
of cones, with possibly more thann extreme rays. At each iteration, up ton + 1
linear programs have to be solved.

In this paper we propose a simple cone covering algorithm that generates cones
with non-increasing value. This algorithm uses traditional cones withn extreme
rays and requires only 2 linear programs per cone. Cycling may be possible only
between cones of same value, which facilitates its detection. The paper is organized
as follows. In Section 2, we describe the basic operations. The algorithm is given
in Section 3 and its finiteness and correctness are proved in Section 4. A short
discussion concludes the paper in Section 5.

2. Basic operations

2.1. INITIAL COVERING

Let O be an extreme point of the polytope. For simplicity, we assume thatO is
non-degenerated (if no non-degenerated extreme point is available, we can start
the algorithm with an initial cone partition formed byn + 1 cones: see, e.g., [7]).
The algorithm starts with the coneK0 of origin O and whosen extreme rays are
determined by then adjacent extreme points toO. SinceO is a feasible point, we
can assume without loss of generality thatγ 6 f (O). Indeed, if this is not the
case,O solves the core problem.

2.2. ELIMINATION TEST

The elimination test is the standard one of the literature (see, e.g., Horst and Tuy
[4]). Let K = cone{O; x1, . . . , xn} be a cone, wherexj , j = 1, . . . , n are n
extreme points ofP . For eachj , we compute the so-calledγ -extensionyj = θj xj ,
which is the intersection of the halfline[Oxj ) with the boundary of the level set
Cγ = {x ∈ Rn : f (x) > γ } (if Cγ is not bounded, we consider insteadCγ ∩ B
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whereB is a ball of centerO containingP ). Consider the following linear program:

LP1(K) max
n∑
j=1

λj

θj

s.t.


n∑
j=1

λjAx
j 6 b

λ > 0

and its dual:

DLP1(K) min µtb

s.t.

{
µtAxj > 1

θj
, j = 1, . . . , n

µ > 0.

If the optimal valueρ1 is less than or equal to 1, this means that the portion of the
polytopeP contained in the coneK is included in the simplexS = conv{O, y1, y2,

. . . , yn} as it can be seen by the substitutionsyj = xj

θj
in the constraints ofLP1(K).

We then have

min
x∈K∩P

f (x) > min
x∈S

f (x) = min{f (O), f (y1), . . . , f (yn)} > γ

which shows thatK ∩ P cannot contain a point with value< γ . Therefore if
ρ1 6 1, we eliminate the cone.

2.3. SUBDIVISION

If ρ1 > 1, we subdivide the coneK. Let λ1 andµ1 be respectively an optimal
solution of the primal and of the dual. It was shown (see e.g. [5]) thatH = {x ∈
Rn : µ1Ax = ρ1} is a supporting hyperplane for the polytope, hence defines a
faceF of P . Note that sinceµ1 > 0 andρ1 = µ1b, a definition ofF is

F = {x ∈ Rn : aix = bi ∀i | µ1
i > 0; aix 6 bi ∀i | µ1

i = 0}.

We take as subdivision point any extreme pointw2 =
n∑
j=1

λ2
jx
j of F such that

n∑
j=1

λ2
j

θj
> 1. (1)
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Such a point can for example be found by solving the following linear program by
a simplex-like algorithm:

LP2(K,µ1) max
n∑
j=1

λj

θj

s.t.


aix = bi, ∀i | µ1

i > 0
aix 6 bi, ∀i | µ1

i = 0

x =
n∑
j=1

λjx
j

(this linear program is feasible since it admits the solution(x = ∑n
j=1 λ

1
jx
j , λ =

λ1) and its optimal value is greater than 1; moreover if(x, λ) is an extreme point
solution, thenx is an extreme point ofF by definition of the constraints).

Note that the pointw2 is not necessarily inK since we do not requireλ2 > 0,
and is an extreme point ofP since it is an extreme point of one of its faces. It will
be tested for a possible solution to the core problem: indeed iff (w2) < γ , the core
problem is solved withx′ = w2.

The subdivision process is defined as follows. For eachj such thatλ2
j > 0, we

construct the coneKj , obtained fromK by replacingxj by w2. It is easy to show
that the union of all these conesKj forms a cover of the coneK (see, e.g., [7,
Proposition 1]), therefore we replaceK by the conesKj . We say that the conesKj

are thesonsof coneK by the subdivision process.
The following result only uses the fact thatw2 is an extreme point ofF .

PROPOSITION 1. Let K ′ be a son ofK by subdivision with respect tow2. If
f (w2) > γ andρ1(K) > 1, thenρ1(K ′) 6 ρ1(K).

Note that the assumptions are not restrictive since iff (w2) < γ the core problem
is solved and ifρ1(K) 6 1 the coneK is deleted.

Proof. Sincef (w2) > γ , theγ -extension ofw2 is y′ = θw2 with θ > 1. Let
K ′ be a son ofK: it differs fromK by the replacement of one of the edgexj , j =
1, . . . , n by w2. We claim thatµ1 is a feasible solution of problemDLP1(K ′)
with valueρ1(K). Indeed,µ1Axj > 1

θj
for j = 1, . . . , n andµ1 > 0 asµ1 is

an optimal solution ofDLP1(K). Moreoverµ1Aw2 = µ1b = ρ1(K) > 1 > 1
θ
.

SinceDLP1(K ′) is a minimization problem, it follows thatρ1(K ′) 6 ρ1(K).

3. Algorithm

We now give formally the algorithm for solving the core problem. The algorithm
uses 3 sets:Cover is the set of cones that have yet to be processed;Doneis the set
of cones that have been processed and whose value is equal to the current valueρ:
this set must be checked when generating a new cone in order to avoid regenerating
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an already processed cone. Finally,N ew is the set of new cones resulting from the
subdivision of a cone.

Step 1(initialization): construct an initial conical coverN ewof P as explained in
Section 2.1. Compute the value off at the origin and at the intersection points
of the generating rays with the polytope: if one of these values is less thanγ ,
stop and return the corresponding point. InitializeCover to ∅, Doneto ∅ and
ρ to+∞.

Step 2(fathoming): for each coneK in N ew, compute theγ -extensions and solve
the problemDLP1(K), obtaining the optimal solutionµ1(K) and valueρ1(K).
Remove fromN ewall conesK for whichρ1(K) 6 1.

Step 3(anti-cycling):N ew← N ew\Done.
Step 4(subdivision point computation): for each coneK in N ew, choose an ex-

treme pointw2(K) of F = P ∩ {x ∈ Rn : µ1(K)Ax = ρ1(K)} satisfying (1).
If f (w2(K)) < γ : stop and returnx′ = w2(K).
Let Cover← Cover∪N ew.

Step 5(cone selection): ifCover = ∅, stop:f (x) > γ for all x ∈ P . Otherwise
select the conẽK = arg max

K∈Cover
ρ1(K) and remove it fromCover. If ρ1(K̃) <

ρ, resetDoneto ∅ andρ to ρ1(K̃). Add K̃ to Done.
Step 6(subdivision): subdivide the conẽK via the pointw2(K̃) as indicated in

Section 2.3. LetN ewbe the set of sons of̃K. Return to Step 2.

Note that in Step 3, it is only necessary to check if a cone ofN ew is in Doneif its
valueρ is equal to the current valueρ.

4. Convergence proof

A straightforward adaptation of the proof used to prove the validity of Tuy’s al-
gorithm (see [7]) shows that this modified algorithm solves the core problem.

THEOREM 1. After a finite number of iterations, the above algorithm stops at
Step 1, 4 or 5. In the first two cases, a pointx′ ∈ P such thatf (x′) < γ is found;
in the last case,f (x) > γ for all x ∈ P .

Proof. Since the cones are defined by extreme points ofP , which are in finite
number, the number of possible cones is finite. Moreover the valueρ1 associated
to a cone depends only on that cone (note thatγ is fixed). By Proposition 1 and the
cone selection rule in Step 5, a cone with valueρ1 greater than the current value
ρ cannot be obtained. Moreover the anti-cycling rule in Step 3 ensures that a cone
with valueρ1 = ρ cannot be regenerated. Since at each iteration, a finite number
of cones is generated, it follows that the algorithm will stop after a finite number
of iterations.
If the algorithm stops at Step 1 or 4, clearly the returned pointx′ is feasible and
satisfiesf (x′) < γ , so the core problem is solved. It remains to show that if there
exists a pointx′ ∈ P such thatf (x′) < γ , then the algorithm stops at Step 1 or 4.
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Assume by contradiction that such a pointx′ exists but that the algorithm does not
stop at Step 1 or 4. Letγ ′ = f (x′). Sincef is concave onRn, it is also continuous
(see, e.g., Rockafellar [9]), hence by definition

∀ε > 0 ∃ δε > 0 | x ∈ B(x′, δε) ⇒ |f (x)− γ ′| < ε

whereB(x′, δε) denote the ball of centerx′ and radiusδε.
We fix ε to γ−γ ′

2 , which implies thatf (x) 6 γ+γ ′
2 < γ for all x ∈ B(x′, δε). To any

subsetSi of vert (P ) with |Si | < n, we associate the affine subspaceHi spanned
byO and by the elements ofSi. Since theHi are in finite number and of dimension

< n, the setB(x′, δε)∩P \
(⋃

i

Hi

)
is non-empty. Let̃x ∈ B(x′, δε)∩P \

(⋃
i

Hi

)
:

thenf (x̃) < γ . We consider the sequence{Kq}, q = 0,1, . . . of cones containing
x̃ such that for allq, Kq+1 is a son ofKq by the subdivision process of Step 6.
Note thatρ1(Kq) > 1 for all q, since otherwisef (x) > γ for all x ∈ Kq ∩ P ,
contradicting the fact thatf (x̃) < γ . Hence all cones of the sequence belong to the
set of cones generated by the algorithm. Moreover since the subdivision process
is always defined, the sequence is infinite. We will now prove that all cones in
this sequence must be distinct, which is not possible since the number of possible
cones is finite: this contradiction will then imply that our assumption was false,
i.e., that the algorithm must stop at Step 1 or 4. To show that all cones in the
sequence are distinct, assume thatKq = cone{xq1, . . . , xqn} containsx̃, and let
yqj = θqj xqj , j = 1, . . . , n be theγ -extensions. SinceKq is nondegenerate, there
exists a uniquẽνq > 0 such that

x̃ =
n∑
j=1

ν̃
q

j x
qj (2)

(the fact that no component of the vector is null is a consequence of the assump-

tion x̃ 6∈ ⋃
i

Hi). We claim that
n∑
j=1

ν̃
q

j

θ
q

j

> 1. Indeed, if
n∑
j=1

ν̃
q

j

θ
q

j

6 1, x̃ ∈ Sq =

conv{O, yq1, . . . , yqn}, which by concavity off and definition of the pointsyqj , j =
1, . . . , n, impliesf (x̃) > γ , a contradiction. It is now not difficult to show that
the coneKq+1 is the son ofKq obtained by replacing the pointxq`q by wq =
w2(Kq) =

n∑
j=1

λ
q

j x
qj with `q satisfying

ν̃
q

`q

λ
q

`q

= min
j |λqj>0

{
ν̃
q

j

λ
q

j

}
.
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We then haveKq+1 = cone{xq+1,1, . . . , xq+1,n} with xq+1,j = xqj for j =
1, . . . , n, j 6= `q andxq+1,`q = wq , and

x̃ =
n∑
j=1

ν̃
q+1
j xq+1,j

with

ν̃
q+1
j =


ν̃
q

j −
ν̃
q

`q

λ
q

`q

λ
q

j if j 6= `q
ν̃
q

`q

λ
q

`q

if j = `q.

If f (wq) < γ , the algorithm would stop at Step 4, so we havef (wq) > γ for all
q. Thenθq+1

j = θqj for j 6= `q andθq+1
`q
> 1, hence

n∑
j=1

ν̃
q+1
j

θ
q+1
j

=
n∑

j=1,j 6=`q

ν̃
q+1
j

θ
q

j

+ ν̃
q+1
`q

θ
q+1
`q

=
n∑
j=1

1

θ
q

j

(
ν̃
q

j −
ν̃
q

`q

λ
q

`q

λ
q

j

)
+ ν̃

q

`q

θ
q+1
`q

λ
q

`q

=
n∑
j=1

ν̃
q

j

θ
q

j

− ν̃
q

`q

λ
q

`q

 n∑
j=1

λ
q

j

θ
q

j

− 1

θ
q+1
`q


<

n∑
j=1

ν̃
q

j

θ
q

j

,

the last inequality holding becauseλq satisfies (1),θq+1
`q
> 1, and

ν̃
q
`q

λ
q
`q

> 0 by the

choice ofx̃. Since the value of
∑n

j=1
ν̃
q
j

θ
q
j

depends only oñx and on the cone, this

shows that a same cone cannot repeat, contradicting the finiteness of the number of
distinct cones. Hence the algorithm must stop at Step 1 or 4.

5. Discussions

If the subdivision point is taken to bew1 rather thanw2, we obtain the cone
partitioning algorithm with a pure strategy ofω-subdivision [1, 13, 5, 6].

If we replaceLP2(K,µ1) by

LP2′(K) max
n∑
j=1

λj

θj

s.t.


aix 6 bi, ∀i = 1, . . . , m

x =
n∑
j=1

λjx
j .
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(i.e., if no constraint ofP is transformed to an equality), we obtain essentially
Tuy’s 1964 algorithm (actually in Tuy’s algorithm, the elimination test is based on
the optimal value ofLP2 rather thanLP1, which results in less eliminations;LP1
is not solved).

Tuy’s 1964 algorithm and the cone partitioning algorithm only need to solve
one linear problem per cone: in Tuy’s algorithm it isLP2′ while in the cone
partitioning one it isLP1. We observe that Tuy’s algorithm is finite (or can easily
be transformed to a finite one) but that it may waste a lot of time by reexploring
large portion of the polytope (note in particular that there is no monotonicity result
comparable to Proposition 1 forρ2, so a son can be worse than its father: see [7]).
On the opposite, the cone partitioning algorithm never reexplores regions of the
polytope that were already explored, but it is still not known if it is finite when an
exact optimal solution is sought.

By considering a different linear program for each operation (deletion and de-
termination of the subdivision point), we have obtained an intermediate algorithm:
its finiteness is easy to ensure since we have only to detect possible cycles between
cones of same value; and although some regions of the polytope may be reexplored,
the monotonicity ofρ1 limits this reexploration.

Currently, these 2 linear programs are defined using the same cone. In the future,
we could possibly obtain an even better algorithm by solvingLP1 on a tighter cone
(not necessarily defined by extreme points), that does not include the non-necessary
parts of the polytope added by the covering.

It is not known if cycling can really occur in our algorithm. However if we
modifyLP2 as indicated above (i.e., if we replaceLP2 byLP2′), it is known that
cycling can occur: see [7].

Finally, observe that the algorithm does not need to solveLP2 at optimality. A
basic feasible solution with value strictly greater than 1 is sufficient.
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